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FOREWORD

The present study is part of a program f//"Theoretical Research on

Combustion and Wave Propagation in Metal Dust-Oxidant Mixtures'ýbeing con-

ducted by the Division of Engineering, Brown University, under United

States Army Ordnance Contract No. DA-19-020-ORD-4761. The work was admin-

istered by the Pyrotechnics Laboratory of the Picattiny Arsenal, Dover,

N.J.
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SUMMARYI
A macroscopic theory of two-phase flow with mass, momentum and energy

exchange is discussed. The theory is applied to the study of systems which

depart only slightly from local thermodynamic equilibrium. An example

of wave propagation in a two-phase medium with viscous and thermal

I relaxation is calculated. It confirms some of the predictions of ref. 2,

i where a thermodynamic analysis was carried out.
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1. Introduction The analysis presented here was undertaken in an attempt

to understand better the nature of propagation of waves and combustion fronts

in a pyrotechnic mixture. The mixture consists usually of two components,

both in granular form: a light metal, such as aluminum or magnesium, and

an oxidizer, such as potassium perchlorate.. The granules have an average

diameter of 15 microns which is usually much smaller than the smallest

macroscopic scale of interest. (see ref, 1) For example, in a particular

problem, the smallest macroscopic scale of interest, denoted by • , may

be a fraction of a millimeter or larger. Furthermore, there are usually

so many granules in a volume 19 that the mixture may be considered

macroscopically as a continuum. The implication of a continuum description

of the granular mixture will be discussed more fully in the next section.

For the moment we shall accept this view.

The mechanical and thermodynamic properties of such a continuum de-

pend on the microscopic structure of the mixture; in particular, on the

microscopic state of the aggregate of the granules. There are two extreme

cases which may be discerned: In the first case, the mean distance between

* neighboring granules is large compared with the mean diameter of the

granules; in the second, the two lengths are of the same order of magnitude.

3 In the former case, the great majority of the granules are not in contact

with another granule. These granules are merely particles suspended in a

3 perfect gas. Such a mixture behaves essentially like a "Dusty Gas". In

the second case, most of the granules are in direct contact with their

neighboring granules. As an extreme example, the granules are so tightly

3 packed together that they lock into one another. In this extreme case,

the mixture behaves essentially like a solid, or better, a "porous solid"

3 with the intergranular space filled with a perfect gas. In the inter-

mediary range between the "dusty gas" and the "porous solid", the mixture

assumes a mixed behavior. Thus, for example, the mixture exhibits
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properties which are characteristic of a solid undergoing plastic defor-

mation. The thermodynamics of a dusty gas and a porous solid are given in

refs. 2 and 3; that of a loosely packed granular mixture is given in ref. 4.

I In a thermodynamic analysis, it is assumed that the relative motion

3 between the granules and the surrounding gas is negligible only. Further-

more, we assume that the granules and the surrounding gas are either in

3 thermal equilibrium with one another at all times or are thermally insulated

from each other. In spite of these rather severe restrictions, the result

of a purely thermodynamic analysis often leads to important conclusions.

3 An example of such an application is given in ref. 2.

In what follows we shall be interested in problems in which the

U granules and the gas between them are not in thermodynamic equilibrium.

Between these two components, there will in general be an exchange in mass,

momentum and energy. We propose to examine these non-equilibrium phenomena

3 within the framework of a continuum theory.

Earlier contributions to this subject were mainly due to F. A. Williams

3 who developed a statistical theory of spray and applied it to many combustion

problems. (ref. 5, 6, 7) We adopt here an alternate approach -- the

I macroscopic approach. We shall make use of the method of irreversible

5 thermodynamics to establish certain phenomenological laws describing the

interaction between the flow and the particles suspended in it. The

limitations of these laws are discussed. An application of the macroscopic

1 theory to wave phenomena in such a medium is included.

2. Some Macroscopic Properties of the Mixture We shall now examine the

1 conditions under which a granular mixture may be considered as a continuum

on the macroscopic scale and we shall discuss some of the properties of

such a continuum. This discussion can perhaps be best illustrated by con-

5 sidering a special instance,

Suppose that the average diameter of the granules is of the order of
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10 microns, i.e., l10- cm., and the average distance between the neighboring

granules is of the order of 100 microns, or 10-2 cm. It follows that in

1 cubic millimeter of the mixture there are about 1,000 granules. If the

smallest macroscopic length of interest is greater than a half millimeter,

to be abbreviated by 1(=0.5m,) , then all linear dimensions equal to or

less than k and all areas or volumes equal to or less than e and P

respectively may be taken as macroscopically zero. Under such conditions,

it may be possible to define the various macroscopic density variables at

a point in the mixture considered as a continuum. Thus, for example, the

mass density of the granules at a point may be defined as follows. Let SV

be a macroscopic volume containing the point and SM be the total mass of

the granules in LV . The ratio SM/SV as 8V- >O (which is regarded as

macroscopically zero) represents the mass density of the granules at a

point of the mixture considered as a continuum. Likewise, the stress

vector at a point in the mixture may be referred to the force acting on an

element SA as SA--- etc. On the other hand, to define a mean'tem-

perature and velocity for the granules and the gas between the granules,

we must exclude very rapid changes. An estimate of the smallest macroscopic

time scale allowable for defining such quantities can be made as follows.

First, let us consider a single granule of 10 micron diameter. Assuming a

thermal diffusivity of 0.2 cm2/sec for the granule, it is seen that the

thermal relaxation time in the granule is of the order of (10 3) 2/0 .2 seconds

or 5 microseconds. Hence if the smallest macroscopic time of interest is

greater than 5 microseconds, we may assign a single temperature to each

granule. Since all the granules in a volume V undergo almost identical

changes, we may in fact ascribe a mean temperature for all the granules in

the volume. Similarly a mean velocity of the granules may be defined at

each point of the mixture considered as a continuum. Next, let us examine

the fluid surrounding the granules. Since the average distance between
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neighboring granules is of the order of 100 microns or 10-2 cm. and the

thermal diffusivity of gas is of the same order of magnitude as that in

aluminum, namely, 0.2 cm2 /sec. therefore the thermal relaxation time inI -4
the gas between the granules is of the order of 5xlO sec. or half a

3 millisecond. Hence, we may define a mean temperature for the gas surround-

ing the granules when the smallest macroscopic time of interest is at least

3 1 millisecond. Since the Prandtl number of the gas is of the order of

unity, the viscous relaxation time is also about 5x10 seconds and we

I may ascribe a single velocity for the fluid inside a volume gj.

It follows from the above considerations that if the smallest mac-

roscopic length of interest is large compared with the average distance

between the granules and if the smallest macroscopic time of interest is

long compared with the thermal relaxation time of the fluid between the

granules then a macroscopic continuum description of the granular mixture

is feasible.

There is one further point to be clarified. In the special example

discussed, nothing is said about the time required for the granules and the

gas surrounding them to attain the same temperature and velocity. We have

only discussed the time required for defining a mean temperature and velocity

for each of the two components of the mixture. An estimation of the time

required for the granules and the surrounding gas to attain the same tem-

perature can be readily made. First, we observe that the rate of heat

transfer from the gas to a granule is of the order of

k , L T T T. D" (

where k 0is the conductivity in the gas, AT is the temperature difference

between the granules and the surrounding gas and D is the diameter of

the granule. A1 is thus a measure of the average temperature gradient
D/2

at the surface of the granule. On the other hand, the total change in

heat content in the granule as a result of heat transfer is
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Tr, Jý. ý AT(2.2)

where the term in the bracket is clearly the volume of the granule while

and Cý are 'respectively the density and specific heat of the granule.

The time required for the establishment of thermal equilibrium between the

two components is obtained by dividing (2.2) by (2.1), namely, E. ?C

If o denotes the thermal diffusivity in the granule ( C•z 0.2 cM/ seLc)

This time i•T 1 2 where W is the conductivity of the granule.

For the case of an aluminum or magnesium granule, k is greater than laS

by a factor of 1000. Since &/• is of the order of microseconds, the

time required for the establishment of thermal equilibrium is about 5 milli-

seconds. By a similar analysis, we find the time required for the estab-

lishment of mechanical equilibrium is of the same order of magnitude.

The last calculation shows that if the smallest time scale of interest

is greater than 10 milliseconds, the mixture can in fact be treated as a

system in thermodynamic equilibrium. On the other hand, if the smallest

time scale is of the order of 1 millisecond, we may define a mean temper-

ature for the granule and another for the gas. The same applies to the

velocity of the granule and the gas.

To be sure, we may visualize a situation in which the temperature

and/or velocity in the gas surrounding the granules may vary considerably

throughout most of the region enclosed by the small volume e. ; and,

in spite of this, a mean temperature and velocity may be defined by some

averaging process within the volume £• . If such is the case, the

smallest macroscopic time of interest may be considerably smaller than a

1 millisecond. However, the exact nature of the approximation used becomes

-- rather unclear.

3. Conservation Laws The conservation laws governing the motion and

deformation of the medium can be easily derived. For the sake of simplicity,
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we shall consider the granules as all of one species and the gas as another.

Generalization of the analysis to mixtures of many species does not present

any special difficulties. We shall use the superscripts, the "primes" and

"double-primes", to signify quantities pertaining to the granules and the

surrounding gas respectively. Thus, I and ?' denote respectively the

mass of the granules and of the gas per unit volume of the mixture; '

and U'h denote respectively the velocities of the granules and of the gas.

The law of mass conservation can be expressed simply as:

'~A~' U" )v('+ = 0 (3.1)

If •' and J" denote respectively the body force acting on the

granules and on the gas per unit volume of the mixture, the equation of

momentum balance is

where p denotes the gas pressure.

In deriving the last equation, we have neglected a term which may be

called the "pressure contributed by the granu1les". We recall that the

quantity which is, on the macroscopic scale, called "pressure" is, in

actuality, the average value of a component of the momentum flux on the

3 microscopic scale. To *be more precise, if we denote the velocity of a

gas molecule relative to an observer moving with the mean velocity •" by

-- and if m" is the mass of the molecule, the pressure tensor is

defined by the phase average:

I where ( ), signifies an average over the velocity space. The scalaris y dfiitin L //

pressure p is by definition F . In exactly the same manner, a

pressure contributed by the random motion of the granules may be defined

3 in terms of

I <



where ' is the velocity of a granule relative to an observer moving with

the mean velocity us ; rn' denotes the mass of the granules; and()

signifies an average taken over the phase space spanned by Cl m' and the

temperature of the granules T' . However, unlike the case of gas molecules

Z' is usually small compared wzith f' so that the "pressure" p := p is

in general much smaller than For this reason, we shall neglect p

the "pressure" due to the random motion of the granules.

Under the same approximation, we may write down the energy equation:

ý[iU~~I + h(U +L~2)LA + 2" U" •

*ii'. V. 33

4. Equations Governing the Motion of the Granules and the Gas Let us

define w and o" by the formulas:

1 •t V. = (4.1)

+ V. UZI= CA(4.2)

Evidently w has the significance of being the rate of increase of the

total mass of the granules per unit volume of the mixture, while &1 is the

rate of increase of the mass df the gas per unit volume of the mixture.

Eqs. (4.1) and (4.2) thus represent the equations of mass balance of the

two components. Furthermore, by virtue of (3.1) that

I L•,1il 0 (4.3)

In a s-milar manner, we define F' and FP by

• v .(•" U,•' LA +p F/• g .

+ -- (45)

t 
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is thus the total force everted by the gas on the granules per unit

volume of the mixture and F" is the reaction of this force on the gas.

Evidently

Furthermore, eqs6 (4.4) and (4.5) may be interpreted as the equations of

motion of the granules and of the gas respectively.

Finally, we define and . " by the formulas:

U,2* (4.8)
2- 2

If we interpret (4.7) and (4.8) as the energy equations for the granules

and the gas, the quantity 1 will then have the significance of being

the heat flow into the granules per unit volume of the mixture, while I

is that flow into the gas per unit volume of the mixture. From (3.3),

we see that

1+ F ' -' i-- o= (4.9)

Eqs. (4.3)., (4.6), (4.9) provide three relations for the six variables:

I • • a jI F• ' , F " . We need three more relations before

the problem is completely determined. In general, these relations must

be postulated. However, when the state of the mixture departs only slightly

from the state of local thermodynamic equilibrium, the form of those re-

lations can be determined from thermodynamic considerations. (See the next

section.)

We note that eq. (4.4) can also be written as:

+. (4.10)

where , +'V . Likewise, if - L we
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have:

•_,,÷ _,F-V i (4.11)

Similarly we can rewrite (4.7) and (4.8) as

5Z I( u2 (4.12)

3 , ".( u "2), CO" .L" _F").•'u+ (4.13)

Iurthermoref if we eliminate l-F" from (4.10) and (4.12), we obtain

1()(4.14)
Likewise, from (4.11) and (4.13)

q , +'- - -I Al (4.15)

t it T-
The last equation may also be rewritten as

IUAT I Arip(el+ I 2 IIT 4.6

where use has been made of (4.2). In terms of the entropies, eqs. (4.14)

3 and (4.16) assume the simple form

AV = -1- 1, - -(417)

L5 1 _":-1( - (4.18)

| since

s eT ', 5 ' = A, "'U= H ' (4.19)

for a rigid granule and ST''J U " J(-L for a gas.

5. Entropy Production Let be the density of the mixture. Then

-9 C,
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It is convenient to introduce the mass fraction which is defined as

the total mass of the granules in a unit mass of the mixture. It follows

that

3- (5.2)

Likewise if Y denotes the total mass of gas in a unit mass of the mixture,

we have

y "/ (5.3)

Obviously,

'Y'+ N' l(5.4)

We shall also define the velocity u of the mixture by the formula

_ ,A,= + " (5.5)

Eq. (4.1) can then be rewritten as

_I S, v • •= o(5.6)

which is the continuity equation for the mixture. Finally, let us in-

I troduce

3 Dt A*t7

5 and

V U V =- -U (5 8)

It may be easily verified that (4.1) and (4.2) may be rewritten as:

-~~ ~ 11, ,(,y',= ,/

- -(5 
10 )
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Also (4.18), (4.19) become:D51 j.' y,•,%.,q ,_S1=_ ,A,_ Z)] (5.11

11 DS!~ V1~SLJ... L '&- LAIIZ)jj (5.12)

U If S denotes the entropy of a unit mass of the mixture,

3! Y 1 +Y"5" (5.13)

3 and we may compute t• from (5.9): (5.10), (5-11), (5.12) and (5.13).

Omitting the algebraic details, we find ultimately the equation

t V,, S")- (5.14)

where

andC' ,&0 are Gibbs' free energy per unit mass of the granules and

3 of the gas respectively. Eq. (5.14) has a simple meaning) for it may be

rewritten as

U •_v .(•,ks,+ S"1,,") (5.16)

I where use has been made of (5.6) and (5.8). If we integrate (5.16) over

a region enclosed by a smooth control surface, we have

jSOV Av t "" 1 )A (5-17)

ti
The first term of this equation is clearly the rate of increase of entropy

I inside the volume. The second term represents the amount of entropy

3 convected out of the region. The last term must then be the entropy

produced in the region. Consequently, c signifies the entropy produced

3 in a unit volume of the mixture. Making use of (4.3), (4.6) and (4.9),

we have:

-11-



-A: CT 2L )[L2ý~t 'i j (5 .1 8 )T"t (t, T l T T1 T' •.s

6. Small Departure from Thermodynamic Equilibrium At thermodynamic

equilibrium,

... % .I -- %

I ="i I =?=013- ' • ' , ( 6 o i)

CT'= G!' cot =dl= o0

so that ý- 0 and the entropy of the system attains a maximum. When the

system is near equilibrium, we can expect the following linear relation

between the "fluxes" and the "forces".

II' F - kti"-u') (6.2)

: -T i T (6.3)

- T- " .•o.t'•] (6.4)

where X>01 r)01 kýOandX=J'- ,In particular., if there is no reaction

between the granules and the surrounding gas, we have simply:

F ': = ,, F (L,,_ ,

I cgc~' )IT'T')(6.5)

3 On the other hand, if the smallest macroscopic scale is large compared

with the time required for the granules and their surrounding gas to attain

mechanical and thermal equilibrium, then %lA , and T'- T" For this

case, if there is mass exchange between the granules and the gas surrounding

I them, we have

3l = -W I = ,1-G1(6.6)

3Of course3 in nearly all cases where chemical reaction enters as an im-

portant factor, &I"- @ is not small and the system undergoes changesI
-12-



which are very far from thermodynamic equilibrium. In such cases (6.6)

cannot be used and must be replaced by an appropriate rate law determined

from other considerations. On the other hand, the relaxation times between

the granules and the surrounding gas are in general small and the state

of the system is never too far from the state of thermodynamic equilibrium.

This means that (6.2) and (6.3) may be used in most practical applications.

7. Characteristic Theory The basic equations governing the one-dimensional

motion of the; mi-xture are summarized below:

• =(7.1)

+" U•f"c' (7.2)

0' U .j-' ÷, (703)

'' x +1114. P (7.4)

ý51 t -A t= CM(75

)-t 7A=
-s" _"(7.6)

-- where

3d H/-jI L412( (7-7)

I [III , %I,,11.,IA,,3 ( "(T11IZ~ (7.8)

I In addition, we have the equation of state. This can be readily shown to be

1 (7-9)

where R is the gas constant and T is the temperature of the gas. Further-

Smore, the entropies of the granules and the gas are respectively

I -13-
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5":So 5- C• l• (7.1o)

I2(see ref. 2) To calculate the characteristics of the system, we shall

denote the change of any variable along a characteristics by L. . ThusCSt

1-- C (7.12)

where c- denotes the speed of propagation of the characteristics surface.

Let us now eliminate the spatial derivatives from all of the equations

3 and look for the specific directions along which the variation of the

different quantities can be determined by an equation in this direction.

3 These are the characteristics directions. Thus, from (7.5), we find the

characteristics direction in the xt -space is specified by the wave speed

c=LU' and along which Carrying out this procedure, we

3 obtain the following results. There are six sets of characteristics:-

1) A triplet of the, characteristics C.=tA along which

I (7.13)

3 and

A )- W (double) (7.14)

2) A single family of characteristics propagating at C= •"along which

981=' (7.15)

* 3) Two families of characteristics propagating with the speeds

c=•"±M, along which we have

It c~..* F' r ~l_ LýI flcl' t St s t,

t• (.-•") - S S 0o (7.16)
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Because of the degeneracy of the characteristics ralations (7.14), we have

only five equations for the six variables:.5', 5", ULA' LA
1 j a",

Note that the pressure can always be calculated from the equation of state

m and expressed in terms of these variables.

To complete the system we need an additional equation. This is

provided by (7.1) if we eliminate L from it with the help of (7.12).

m Thus we find that along c -A

m ¶,+ ?,LA' 1 (7.17)I- -e =

These relations are adequate for studying wave problems in the mixture by

numerical methods.

m 8. Small Amplitude Waves For small amplitude waves we may linearize

3 the governing equations and an analytical solution may be constructed. In

this calculation, we shall assume cl= o"- • The linearized form of the

I governing equations are:

_v. (8.l)

" V. 0 (8.2)

ot (83
Tt Q LA'V (8.3)

4-VC)T' --- (8.5)

ýT-T') (8.6)

3 T- (8.7)

where subscript 0\o/ characterizes the undisturbed field. We have

eSnMed thaý the body-forces: ' - ' - 0 . In

this section Lu , T etc, afp- ' ...de.p..oo.

-15- .... i,, TI.oM OU:a V.D,
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to be the perturbed quantities.

if ', • T'T I and are eliminated from the above system of

equations, we have

I c~t(8.8)

(8.9)

where

KI
-I t (8.10)

* (8.11)

1 (8.12)

* 'C~~X( '(8.13)
--% ?

Eliminating u we obtain

where

-- - a 2 7 (8.15)

i,: /(8.16)

r2, • (8.17)

a a..• (8.18)

a (8.19)

and a is the sound speed in the gas when there is no granules.

The solution of (8.14). satisfying the initial condition that the medium

is undisturbed at t, o and the boundary condition associated with the

-16-



piston problem, i.e.,

I = •o H(t) (8.20)

at x• 0 o is

*" I ' 0 0+ st -Ax
-2 _ (8021)

where

~ __ ____ ___(8.22)

For large S;

_S~ t J+ 0  (-L (8.23)

Hence, if X >aot the integral must be closed to the right of the imaginary

axis and hence, p= 0 For Y < a~t , the integral must be closed to the

left and p is., in general, different from zero. In fact, the value

of as -- a t-o is easily computed by applying a Tauberian theorem.

Thus, it is found that

ak -- a-o .• a o0 (8.24)

Hence the wave front is rapidly damped. This is as it should be; for,

the wave front represents a signal propagating between the granules. The

probability that it is not scattered by the granules decreases exponentially

with time,

To examine the behavior of p at the piston for large t , we

introduce a new variable S. Thus, at the piston,

I a. S, -Oct '+e; t e AS (8.25)2• IT tS' *1t ' t.

so that as t- co

_I., o u'o oao (8.26)
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Hence

I pLtoM ) (8027)

I where

(8.28)

The last formula shows that for large time the pressure level is determined

by the equilibrium sound speed a, o On the other hand, for small time

I the pressure at the piston is determined by

I tovn U.- t oct( (8.29): t4- - t7 ]

Finally, the wave profile at large time can also be deduced by using

the method of the steepest descent, (For details, see ref0 5).

Let us introduce the function

I /(sY-S[ aot s+(k (8.30)

then Ip0 U0  e AS (8.31)
-LW •

As t--* oo, the main part of the contribution of the integrand is con-

centrated near the point where V4(S) is a maximum. Since \-/ is an

analytic function of 5 . this point is in actuality a saddle point. A

careful examination of the trajectory of the relevant saddle point shows

3 that it is located on the real axis and crosses S = 0 at

__ az(8-32)
at 0

Now the point S= o is a pole of the integrand, it follows that, for /<atI the solution is of one type while, for x>a 2 t . the solution is of a

3 different type. Taking into account the confluence of the saddle point.

and the simple pole at S-o , we find

•m -18-



ii 1
- - - JO ~ e~jW'S~t+2"(1--') (8.33)

where So is the saddle point and W,4 . Since 5,)o for X(< at

and S. <o for - >,B . the wave profile consists of a small precursor

wave propagating at the sound speed a, which is followed by the main

signal propagating at the equilibrium speed a2 . This conclusion is

qualitatively similar to the result of G. F. Carrier (ref. 8) who considered

the same problem without thermal relaxation. The main difference is that

the main signal propagates with the equilibrium sound speed a. here. We

note that the same conclusion was deduced earlier in ref. 2 where a

Thermodynamic analysis was made.
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